

RADIONUCLIDE SAFETY DATA SHEET

RADIONUCLIDE: F-18 FORMS: Soluble

PHYSICAL CHARACTERISTICS

HALF-LIFE: 110 minutes **DECAY EMISSIONS**

Gammas / X-rays		Betas / Positrons (+) / Electrons*		Alphas	
E (keV)	%	E (keV, Ave)	%	E (keV)	%
511	194	250(+)	97		

⁻ Only 4 most probable emissions per decay type included. Emissions below 10 keV or 1% excluded.

STANFORD HAZARD CATEGORY

C – level (low hazard): ≤ 200 mCi

B – level (moderate hazard): > 200 mCi, ≤ 10 Ci

A - level (high hazard): > 10 Ci

EXTERNAL RADIATION HAZARDS

Gamma dose rate, point source at 1 ft, 1 mCi:

5.6 mrem/h

Beta dose rate to skin, point source at 1 ft, 1 mCi:

440 mrem/h

Contamination skin dose, uniform deposit of 1 μ Ci per cm²:

7200 mrem/h

SHIELDING

Gammas/X-rays:

1.5 cm of lead will reduce the gamma dose rate by 90%.

Betas/electrons:

2 mm of plastic will absorb all emissions. Bremsstrahlung may be created and require additional shielding.

INTERNAL RADIATION HAZARDS

Annual Limit on Intake: **50000 μCi** (Ingestion)

70000 μCi (Inhalation)

The values above indicate the activity taken into the body that would result in either 5 rem to the whole body (CEDE) or 50 rem to an organ or tissue (CDE).

DOSIMETRY AND BIOASSAY REQS

Whole-body and finger-ring dosimeters are required for handling **5 mCi** or more, or **1 mCi amounts weekly**. Urine assays may be required after large spills or contaminations.

SPECIAL PROBLEMS AND PRECAUTIONS:

- 1. Recommended survey probe: **PGM or Nal**
- 2. Always wear protective gloves, a lab coat, and safety eyewear to protect the skin and eyes from contamination. Change gloves often.
- 3. Survey work areas before, during, and after work. Work areas may require shielding to keep dose ALARA. Instrument and smear surveys are required.
- 4. Segregate waste to those with half-lives of less than **1 day**. Survey the waste disposal area to ensure exposure rates are less than 2 mR/hr at 1 foot.
- 5. Limit soluble waste to the sewer to less than **1000** μ Ci/day per lab.

References:

- Delacroix, D., Guerre, J.P., Leblanc, P., Hickman, C. (2002). Radionuclide and Radiation Protection Data Handbook (2nd ed.). Ashford, Kent: Nuclear Technology Publishing.
- Johnson, T.E., Birky, B.K. (2012). Health Physics and Radiological Health (4th ed.). Baltimore, MD: Lippincott Williams & Wilkins.
- ICRP, 2008. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3).
 Penlow D. (2009) Specific Comma Pay Dose Constants with Current Emission Data. Health Physics, 118(4):403–416; 2020.
- Peplow, D. (2020) Specific Gamma-Ray Dose Constants with Current Emission Data. Health Physics, 118(4):402-416; 2020.
- Smith, D., Stabin, M. (2012) Exposure Rate Constants and Lead Shielding Values for Over 1,100 Radionuclides. Health Physics, 102(3): 271-291.
 10.CFR.20 Standards for Protection Against Radiation (2019). Retrieved from https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/